position: EnglishChannel  > News> Major Breakthrough in Wheat Fusarium Head Blight Resistance

Major Breakthrough in Wheat Fusarium Head Blight Resistance

Source: | 2024-05-10 13:50:40 | Author:


PHOTO:?VCG

By?Staff?Reporters

Recently, a significant breakthrough in understanding the resistance mechanism against wheat Fusarium head blight(FHB) has been made by a collaborative effort among Jiangsu Academy of Agricultural Sciences, Nanjing Agricultural University, and international research teams.

The FHB is a widespread fungal disease affect on wheat,barley and some other cereal crops, which has been causing severe losses in the food industry globally.

In recent years, China has become one of the countries most severely affected by FHB, with an annual incidence area accounting for approximately 20 percent of the wheat sown area, posing a serious threat to the country's food security. Breeding FHB-resistant wheat varieties has become one of the key strategies to control this damaging disease.

Among numerous genes conferring resistance to FHB, Fhb1 stands out as the most effective quantitative trait locus (QTL) for FHB resistance and has been widely utilized in FHB-resistant breeding programs. Despite the cloning of this gene, the exact mechanism of action of Fhb1 has remained unclear.

Within wheat, TaHRC protein isoforms recruit multiple protein complexes containing disordered regions. However, they also drive the separation of these complex members through opposing actions, thereby exhibiting both susceptibility and resistance to FHB.

By employing genetic modification techniques, researchers elucidated how different states of condensates regulate the stability of alternative splicing and immune responses, ultimately controlling the mechanisms of wheat's resistance and susceptibility to FHB.

This research not only reveals the biological mechanism by which the crucial Fhb1 gene-encoded protein regulates wheat's response to FHB through driving condensate formation but also provides a new perspective for understanding wheat's defense and response mechanisms against FHB. It also offers crucial support for future molecular breeding programs aimed at developing FHB-resistant wheat varieties.

The collaborative effort and groundbreaking findings in this study signify a significant step forward in combating FHB, potentially leading to more effective strategies for safeguarding wheat crops against this destructive disease.

The findings were published online in the international academic journal "Cell Host & Microbe," with the paper also selected as the cover article.

Editor:林雨晨

Top News

  • From weeding and vegetable growing to the overall management of agricultural systems, AI has been widely adopted across all aspects of agriculture.

Innovation Fuels Private Sector Growth

As an important part of the national economy, the private sector is the main driver of startups and employment, and a key player in technological innovation. To realize high-quality development, private enterprises need to strengthen their awareness of sci-tech innovation, and seek innovation-driven development instead of the traditional labor or resource-driven path.

AI Diagnosis Model Facilitates Industry Upgrade

?Although launched less than a year ago, China's first AI large model for the diagnosis, operation and maintenance of industrial equipment has already been widely adopted in the coal, chemical and power industries.

抱歉,您使用的瀏覽器版本過低或開啟了瀏覽器兼容模式,這會影響您正常瀏覽本網(wǎng)頁

您可以進行以下操作:

1.將瀏覽器切換回極速模式

2.點擊下面圖標升級或更換您的瀏覽器

3.暫不升級,繼續(xù)瀏覽

繼續(xù)瀏覽